
Sage Workflows User Guide
Release 0.0.1

Jun 18, 2020

Overview

1 Rationale 3
1.1 Why use workflows? . 3

2 Workflows 101 5

3 Workflow Standards 7

4 Workflow Engines 9
4.1 Common Workflow Language (CWL) . 9

5 Getting Started with CWL 11

6 CWL Inputs & Outputs 13

7 Using Containers 15

8 JavaScript & CWL 17
8.1 Part 1: InlineJavascriptRequirement . 17
8.2 Part 2: Expression tools . 18

9 Scattering Inputs 21
9.1 Part 1: Getting started . 21
9.2 Part 2: dotproduct . 22
9.3 Part 3: flat_crossproduct . 23
9.4 Part 4: nested_crossproduct . 25

10 Staging Folders 29
10.1 Part 1: Input files in the working directory . 29
10.2 Part 2: Creating a config file in the working directory . 31
10.3 Part 3: Making an input file or directory writable . 31

11 Cloud Providers 33

12 Sharing Workflows 35

13 Workflow Metadata 37

14 CWL & Linked Data 39

i

15 Synapse CWL Tools 43

16 Synapse Workflow Hook 45

17 Indices and tables 47

ii

Sage Workflows User Guide, Release 0.0.1

Numerous groups are developing technologies and best practices for describing and running genomic analyses in
a portable and reproducible fashion. Key among these technologies are specifications to describe workflows and
tools/tasks such as the Common Workflow Language (CWL) and the Workflow Description Language (WDL) as well
as software containers such as Docker. These enable scientists to express and run complex workflows by explicitly
defining the inputs and outputs of tools/tasks, how the outputs of tools are passed to the inputs of others, and runtime
requirements.

Workflow execution should support multiple tasks and domains at Sage, including challenge infrastructure, data pro-
cessing pipelines, computationally intensive analyses, and benchmarking for scientific communities. The WG will
support teams by developing scalable, documented workflows, as well as the systems and guidance to author, test,
execute, and share these workflows for diverse applications. Our goal is to prototype and demonstrate solutions, and
define requirements and specifications for the Synapse platform team. Members of this team will participate in and
monitor external groups and communities — to stay aware of and informed on best practices and emerging standards.
Any systems we devise and implement should conform to and enable FAIR principles; in particular, tight integration
with data provenance in Synapse should be a long term goal of any workflow-related developments.

Overview 1

Sage Workflows User Guide, Release 0.0.1

2 Overview

CHAPTER 1

Rationale

1.1 Why use workflows?

Software container technologies, such as Docker, allow researchers to create lightweight virtual machines into which
they can install software, configuration, and small data files. The resulting images can be shared across a variety
of cloud or local computing platforms. Such “Dockerized” algorithms can be “moved” to the data (i.e., uploaded
in the same computer system containing the data) in contrast to the traditional format of “moving data” to modelers
(i.e., modelers download data to their computational space, which could be onerous when datasets are massive). One
advantage to this framework are that it facilitates the use of protected, proprietary, and very large datasets — with vastly
reduced data-transfer, improved data security, and reduction of administrative and IRB overhead. Another advantage
is the creation of a library of well-annotated algorithms with consistent input and output parameters for community
use.

While container technologies provide a reliable and interoperable way to move models across computational environ-
ments, orchestration of large numbers of containers and distributed data assets requires significant engineering over-
head. Workflow execution systems orchestrate one or more asynchronous tasks, linked by dependency relationships.
Managing container execution through hardened workflow systems (e.g., Toil, FireCloud/Cromwell, Galaxy) offers
several benefits: (i) Scalability: built-in support for resource provisioning, distributed task execution, autoscaling, and
utilization of different backends for scheduling and load balancing; (ii) Portability: coordination of dependencies and
data among containerized steps for reproducible computing across environments; (iii) Reentrancy: the ability of a
program to continue where it left off if interrupted through sophisticated caching mechanisms and failure/recovery
logic.

3

Sage Workflows User Guide, Release 0.0.1

4 Chapter 1. Rationale

CHAPTER 2

Workflows 101

5

Sage Workflows User Guide, Release 0.0.1

6 Chapter 2. Workflows 101

CHAPTER 3

Workflow Standards

7

Sage Workflows User Guide, Release 0.0.1

8 Chapter 3. Workflow Standards

CHAPTER 4

Workflow Engines

There are a diverse number of workflow engines and languages available. This figure below illustrates the compatibility
between the different engines and languages.

4.1 Common Workflow Language (CWL)

• As an organization we are working to provide Synapse support to CWL primarily

General rationale is documented below:

• CWL is literally a community-driven standard (two of its main “competitors” — Jeff Gentry / WDL and John
Chilton / Galaxy — are on the leadership team). not only was it designed as a standard, but it was designed first
and foremost to ensure portability and reproducibility — something that’s fairly important in our field

• there are multiple implementations of CWL (in this case, by implementations I mean execution engines or
platforms that support CWL), meaning one can take a CWL tool/workflow and run it not just in different en-
vironments, but using different software. this cannot be said for Nextflow, Snakemake, Galaxy, or even WDL.
if the maintainers of those platforms decide to kill the project (unlikely I know), then your workflow now has
a much more finite lifespan. conversely, each of the the platforms for those languages — as mentioned — are
working on support for CWL, even if it’s just at the stage of import/export

9

Sage Workflows User Guide, Release 0.0.1

• while CWL can be harder to use and might not be quite as expressive or powerful as Nextflow and Snakemake..
it’s still pretty damn powerful. i also think it provides a particularly nice interface for Docker images, which in
a lot of cases can just end up as black boxes

• CWL as a language is built on concepts related to linked data, and it provides far more support for semantics,
annotation, validation of inputs/outputs, resolution of paths and locations, etc. than other platforms. I think some
of these features are underutilized in most real world examples, but could be super useful if fully harnessed

• there are already multiple groups thinking about (and working implementations of) combining CWL with prove-
nance standards (i.e., W3C PROV)

• there’s a related (still pending official approval GA4GH) API called the Tool Registry Service (TRS) that allows
users to describe, share, and find tools/workflows in a standardized way. TRS and it’s main implementation,
Dockstore, historically supported CWL and WDL, though now can support Nextflow as well; the folks at Bio-
containers just started to roll out their own implementation of TRS, which will allow users to more easily connect
their Docker images and the workflows that use them

10 Chapter 4. Workflow Engines

CHAPTER 5

Getting Started with CWL

11

Sage Workflows User Guide, Release 0.0.1

12 Chapter 5. Getting Started with CWL

CHAPTER 6

CWL Inputs & Outputs

13

Sage Workflows User Guide, Release 0.0.1

14 Chapter 6. CWL Inputs & Outputs

CHAPTER 7

Using Containers

15

Sage Workflows User Guide, Release 0.0.1

16 Chapter 7. Using Containers

CHAPTER 8

JavaScript & CWL

8.1 Part 1: InlineJavascriptRequirement

If you need to do a computation while running a cwltool, you can do so using a snippet of javascript.

#!/usr/bin/env cwl-runner

$namespaces:
s: https://schema.org/

s:author:
- class: s:Person
s:identifier: https://orcid.org/0000-0002-0326-7494
s:email: andrew.lamb@sagebase.org

s:name: Andrew Lamb

cwlVersion: v1.0

class: CommandLineTool

requirements:
- class: InlineJavascriptRequirement
- class: InitialWorkDirRequirement

listing:
- entry: $(inputs.file)
writable: true

baseCommand:
- gzip

inputs:

- id: file

(continues on next page)

17

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

type: File
inputBinding:
position: 1

outputs:

- id: gziped_file
type: File
outputBinding:
glob: $(inputs.file.path + ".gz")

The above tool gzips the given input file. The gzip util will tack on the the .gz suffix, so we don’t know what the exact
file name will be. But we can figure it out using a little bit of javascript:

- id: gziped_file
type: File
outputBinding:
glob: $(inputs.file.path + ".gz")

1. Inputs.file.path returns the path of the input file

2. ‘+ “.gz”’ concatenates the gz suffix

3. $() returns the result of the javscript expression contained between the parens

8.2 Part 2: Expression tools

Expression tools are cwltools that only perform javascript, and don’t call any other script or command.

#!/usr/bin/env cwl-runner

$namespaces:
s: https://schema.org/

s:author:
- class: s:Person
s:identifier: https://orcid.org/0000-0002-0326-7494
s:email: andrew.lamb@sagebase.org

s:name: Andrew Lamb

cwlVersion: v1.0
class: ExpressionTool

requirements:
- class: InlineJavascriptRequirement

inputs:

- id: input_file
type: File

- id: new_file_name
type: string

outputs:
(continues on next page)

18 Chapter 8. JavaScript & CWL

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

- id: output_file
type: File

expression: |
${
inputs.input_file.basename = inputs.new_file_name;
return {output_file: inputs.input_file};

}

Expression tools are like command line tools in terms of input and outputs. The difference is that instead of execution
a commnad, expression tools execute a javascript expression:

expression: |
${
inputs.input_file.basename = inputs.new_file_name;
return {output_file: inputs.input_file};

}

This expression simply renames the file, and returns it.

8.2. Part 2: Expression tools 19

Sage Workflows User Guide, Release 0.0.1

20 Chapter 8. JavaScript & CWL

CHAPTER 9

Scattering Inputs

9.1 Part 1: Getting started

If you need to run a tool or workflow on an array, or multiple arrays of inputs, scatter is the way to accomplish this.
We will be using the following tool as example of what we are looping over:

This runs the linux command wc(word count) on an input file, with the option to use the -l(lines) flag. Let’s assume
we want to run this tool on an array of files. (You can use the wc command on a list of files, but let’s ignore this for
the example.)

The way to run a tool on an array of inputs is to do it at the workflow level:

Let’s go through the relevant parts.

This is necessary for using the scatter functionality:

requirements:
- class: ScatterFeatureRequirement

We want to run the tool on a list of input files. This is indicated by placing square brackets after the type:

inputs:

lines: boolean?tep
file_array: File[]

We will get back an array of files. Note that the scatter step will always result in an array output of whatever type the
you are scattering produces. For example if the tool produces a File, the scattered version will produce and array of
files. If the tool produces an array, the scattered version produces an array of arrays. This is true if the output of the
step is the final workflow output, as in the above example, or it’s being fed into another step.

outputs:

output_array:
type: File[]

(continues on next page)

21

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

outputSource:
- wc/output

Finally we need to specify where an what we are scattering

In this example we want to run the wc.cwl tool over multiple files. The tool only takes in one file, so we have to make
the workflow run the tool multiple times. The tool has the file input named ‘file’, whereas the workflow has the array
input named ‘file_array’. If we gave the tool the array input here, normally this would cause an error since a file array
is not the same as a file:

in:
lines: lines
file: file_array

However by adding the scatter definition, we are telling the workflow to iterate over the array of files, running the tool
once per each item in the array:

scatter: file

Note that the item we scatter is the name of the tool input name, NOT the workflow input name.

9.2 Part 2: dotproduct

This is a continuation from part 1. We will also be using the wc.cwl tool from that example.

In part 1 we covered how to do a sample scatter on an array of files. We’ll now extend that any number of arrays.
When you want to scatter over multiple arrays, you will need to tell CWL how to handle that. For this example we
will use the scatter method called “dotproduct”.

You can use the dotproduct as long as the arrays are the same length. The length of the arrays will determine how
time your tool is run, and thus the length of the output array. For example if you have two arrays of three items each,
and both are scattered, the tool would be run three times, the first instance would take the first item from each array as
parameters, the second instance would use the second item from each array, and so on. Lets see an example:

#!/usr/bin/env cwl-runner
#
Authors: Andrew Lamb

cwlVersion: v1.0
class: Workflow

requirements:
- class: ScatterFeatureRequirement

inputs:

line_array: boolean[]
file_array: File[]

outputs:

output_array:
type: File[]
outputSource:

(continues on next page)

22 Chapter 9. Scattering Inputs

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

- wc/output

steps:

wc:
run: wc.cwl
in:

lines: line_array
file: file_array

scatter:
- lines
- file

scatterMethod: dotproduct
out:

- output

This is very similar to the first example, let’s look at what’s changed.

We are still iterating over an array of input files, but here we want to also control whether or not we use the lines flag
or not, so we are now providing an array of booleans:

inputs:

line_array: boolean[]
file_array: File[]

We now need to scatter two array inputs:

scatter:
- lines
- file

Finally since we are scattering more than one array we need to provide the method:

scatterMethod: dotproduct

9.3 Part 3: flat_crossproduct

This is a continuation from part 1 and 2. We will also be using the wc.cwl tool from part1

In part 1 we covered how to do a sample scatter on an array of files. In part 2 we extended that any number of
arrays using the dotproduct. We will now look at scattering over multiple arrays using the flat crossproduct. Where
the dotproduct required that your arrays be the same length, the flat crossproduct can scatter over arrays of different
length. In addition, where the dotproduct result output is equal to that length of the arrays, the flat crossproduct result
output is equal to: len(array1) * len(array2) * . . . len(array_n).

Another way of describing this is that the cwltool is run on every combination of inputs from each array. For example
if you have an array of 3 files, and array of 2 flags, you will have 6 outputs. Each file will be run, once per each flag.
The example workflow is exactly the same as the one in part2 except:

scatterMethod: flat_crossproduct

And the input yaml:

9.3. Part 3: flat_crossproduct 23

Sage Workflows User Guide, Release 0.0.1

line_array:
- true
- false

file_array:
- class: File

path: test_file1
- class: File

path: test_file2
- class: File

path: test_file3

And finally the output of “cwltool wc_workflow3.cwl wc_workflow.yaml” :

{
"output_array": [

{
"path": "/home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 70,
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"class": "File",
"checksum": "sha1$a912a8cf6107efe1bff86c42b7899e0a090d383c"

},
{

"path": "/home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 70,
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"class": "File",
"checksum": "sha1$ad06722d0c3641f8baf46242fcea51b77ee558e9"

},
{

"path": "/home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 70,
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"class": "File",
"checksum": "sha1$35470ddb936f3d1d3a5b907ff73c61d8df35d968"

},
{

"path": "/home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 74,
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"class": "File",
"checksum": "sha1$16fb2f95337e0b7c2b0e5076dc09b6509a762482"

},
{

"path": "/home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 77,
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"class": "File",
"checksum": "sha1$c5c3a3c1ff8ef9d4573f8238cb67c355225775d7"

},
{

(continues on next page)

24 Chapter 9. Scattering Inputs

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

"path": "/home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 77,
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"class": "File",
"checksum": "sha1$b0fb51fac542b2b9f64d1408acabcfb61b8a4055"

}
]

}

9.4 Part 4: nested_crossproduct

This is very similar to flat_crossproduct. The difference is that instead of one long flat array, you will receive a nested
array as output:

#!/usr/bin/env cwl-runner
#
Authors: Andrew Lamb

cwlVersion: v1.0
class: Workflow

requirements:
- class: ScatterFeatureRequirement

inputs:

line_array: boolean[]
file_array: File[]

outputs:

output_array:
type:

type: array
items:
type: array
items: File

outputSource:
- wc/output

steps:

wc:
run: wc.cwl
in:

lines: line_array
file: file_array

scatter:
- lines
- file

scatterMethod: nested_crossproduct
out:

(continues on next page)

9.4. Part 4: nested_crossproduct 25

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

- output

The output will look like:

{
"output_array": [

[
{

"location": "file:///home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 70,
"checksum": "sha1$e211886d70dfff0eb61fc917d75f184ce8b609b7",
"class": "File",
"path": "/home/aelamb/cwl_stuff/output.txt"

},
{

"location": "file:///home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 70,
"checksum": "sha1$5a30593e67cc7d8e446b0ea1559da74fb35be45a",
"class": "File",
"path": "/home/aelamb/cwl_stuff/output.txt"

},
{

"location": "file:///home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 70,
"checksum": "sha1$0220442cc49f0a4b3f82821725b40449c4e150f6",
"class": "File",
"path": "/home/aelamb/cwl_stuff/output.txt"

}
],
[

{
"location": "file:///home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 74,
"checksum": "sha1$ff65542777206d16635fa2c1a3e0e6376ea02a29",
"class": "File",
"path": "/home/aelamb/cwl_stuff/output.txt"

},
{

"location": "file:///home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 77,
"checksum": "sha1$c5f042720e1f9e6cf75de5659ef01f547cd1d38f",
"class": "File",
"path": "/home/aelamb/cwl_stuff/output.txt"

},
{

"location": "file:///home/aelamb/cwl_stuff/output.txt",
"basename": "output.txt",
"size": 77,
"checksum": "sha1$e125e09c3b8a7d398014e791698dda762afb0bea",
"class": "File",
"path": "/home/aelamb/cwl_stuff/output.txt"

}
(continues on next page)

26 Chapter 9. Scattering Inputs

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

]
]

}

9.4. Part 4: nested_crossproduct 27

Sage Workflows User Guide, Release 0.0.1

28 Chapter 9. Scattering Inputs

CHAPTER 10

Staging Folders

CWL stages all input files and directories in a random read-only temp directory away from the working directory.
If these are part of the basecommand, arguments, or have an inputBinding, CWL will handle the file paths for you.
However you the above limitations will not work in the following situations:

1. The File or Directory needs to be staged in the Docker image, but is not part of the command.

2. You need to change the file or directory in some way.

3. You need the file or directory to be in the working directory.

4. The path to the file or directory needs to be predictable.

10.1 Part 1: Input files in the working directory

Here is a python script that can use the sync to synapse function:

import synapseclient
import argparse
import synapseutils

if __name__ == '__main__':

parser = argparse.ArgumentParser("Stores files in Synapse")

parser.add_argument(
'-m',
'--manifest_file',
type = str,
required=True)

parser.add_argument(
'-c',
'--synapse_config_file',

(continues on next page)

29

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

type = str,
required=True)

args = parser.parse_args()

syn = synapseclient.Synapse(configPath=args.synapse_config_file)
syn.login()

synapseutils.sync.syncToSynapse(syn, args.manifest_file)

And here is the CWL tool that calls it:

#!/usr/bin/env cwl-runner
#
Authors: Andrew Lamb

cwlVersion: v1.0
class: CommandLineTool

requirements:
- class: InitialWorkDirRequirement

listing: $(inputs.files)

hints:
DockerRequirement:
dockerPull: quay.io/andrewelamb/python_synapse_client

baseCommand:
- python3
- /usr/local/bin/sync_to_synapse.py

inputs:

files: File[]

synapse_config_file:
type: File
inputBinding:
prefix: "--synapse_config_file"

manifest_file:
type: File
inputBinding:
prefix: "--manifest_file"

outputs: []

In the above example we need to pass a manifest to the tool that has the paths of the files to be uploaded. If we didn’t
stage the files in the working directory, CWL would put them all in their own randomly generated temp directories.
By placing them in the working directory we know that the relative paths will be just the name of the file.

To stage the files specified in the input files parameter we include the following:

requirements:
- class: InitialWorkDirRequirement

(continues on next page)

30 Chapter 10. Staging Folders

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

listing: $(inputs.files)

Notice that the below input does not have an inputBinding. This means its a parameter of the tool, but not the command
the tool is constructing. This allows the file parameter to be referenced by the InitialWorkDirRequirement:

10.2 Part 2: Creating a config file in the working directory

The below tool needs a config file, where the last line is a directory that is being passed in an input. The directory will
be put in a random location in the docker image, so the config file cannot be passed in as an input as well, but needs to
be written after the path to the directory is known.

baseCommand: run-pipe

arguments:
- --config
- config_drops.ini

requirements:
- class: InlineJavascriptRequirement
- class: InitialWorkDirRequirement
listing:
- entryname: config_drops.ini
entry: |
[Drops]
samtools = samtools
star = STAR
whitelistDir = /usr/app/baseqDrops/whitelist
cellranger_ref_hg38 = $(inputs.index_dir.path)

inputs:
- id: index_dir

type: Directory

The above tool produces a file called config_drops.ini in the working directory with 4 lines. The first three refer to
paths in the docker image, the fourth line refers the input directory and will put the path generated by CWL into the
config file.

10.3 Part 3: Making an input file or directory writable

If you need to make a file writable you can use the writable attribute:

requirements:
- class: InitialWorkDirRequirement
listing:
- entry: $(inputs.input_file)

writable: true

inputs:
- id: input_file

type: File

10.2. Part 2: Creating a config file in the working directory 31

Sage Workflows User Guide, Release 0.0.1

32 Chapter 10. Staging Folders

CHAPTER 11

Cloud Providers

33

Sage Workflows User Guide, Release 0.0.1

34 Chapter 11. Cloud Providers

CHAPTER 12

Sharing Workflows

35

Sage Workflows User Guide, Release 0.0.1

36 Chapter 12. Sharing Workflows

CHAPTER 13

Workflow Metadata

37

Sage Workflows User Guide, Release 0.0.1

38 Chapter 13. Workflow Metadata

CHAPTER 14

CWL & Linked Data

Below is a somewhat verbose story/explanation of the connection between CWL and linked data.

• SALAD is a schema language for linked data, co-developed by developers of JSON-LD and Apache Avro

• the Common Workflow Language (CWL) is more of a standard/specification than a programming language
or DSL, according to Michael Crusoe, Peter Amstutz, et al.

• when you poke around the CWL GitHub repo long enough, you come across files like CommandLineTool.yml and Workflow.yml

– when building tools and workflows, these are the primary “classes” of descriptor files (documents)
that one would write, typically with a .cwl extension

– as far as I can tell the .yml files represent the corresponding schema for each class, based on SALAD

The link between CWL and JSON-LD isn’t obvious at first, because a .cwl descriptor is typically more YAML-like in
structure; however, a few things happen when a CWL file is preprocessed before execution (you can test this with the
cwltool --print-pre my_tool-or-workflow.cwl command):

• the output is clearly JSON, not YAML

• namespaces and references get expanded:

$namespaces:
dct: http://purl.org/dc/terms/
foaf: http://xmlns.com/foaf/0.1/

dct:creator:
"@id": "http://orcid.org/0000-0001-9758-0176"
foaf:name: James Eddy
foaf:mbox: "mailto:james.a.eddy@gmail.com"

becomes. . .

{
"$namespaces": {

"dct": "http://purl.org/dc/terms/",
(continues on next page)

39

https://www.commonwl.org/v1.0/SchemaSalad.html
https://github.com/common-workflow-language/common-workflow-language/blob/master/v1.0/CommandLineTool.yml
Workflow.yml

Sage Workflows User Guide, Release 0.0.1

(continued from previous page)

"foaf": "http://xmlns.com/foaf/0.1/"
},
"http://purl.org/dc/terms/creator": {

"@id": "http://orcid.org/0000-0001-9758-0176",
"http://xmlns.com/foaf/0.1/mbox": "mailto:james.a.eddy@gmail.com",
"http://xmlns.com/foaf/0.1/name": "James Eddy"

},

...

paths get resolved (ish):

inputs:
template_file:

type: File
inputBinding:
position: 1

input_file:
type: File
inputBinding:
position: 2

becomes. . .

"inputs": [
{

"id": "file:///Users/jaeddy/code/github/containers/dockstore-workflow-
→˓helloworld/dockstore-tool-helloworld.cwl#input_file",

"inputBinding": {
"position": 2

},
"type": "File"

},
{

"id": "file:///Users/jaeddy/code/github/containers/dockstore-workflow-
→˓helloworld/dockstore-tool-helloworld.cwl#template_file",

"inputBinding": {
"position": 1

},
"type": "File"

}
],

at runtime, the “job” JSON (or YAML) file gets used and processed somehow to define the actual paths:

{
"template_file": {

"class": "File",
"path": "template.txt"

},
"input_file": {

"class": "File",
"path": "input.txt"

}
}

40 Chapter 14. CWL & Linked Data

Sage Workflows User Guide, Release 0.0.1

(result not shown — because I’m not entirely sure how to produce it)

So. . . there are clearly some JSON-LD “things” going on here. Further evidence as you scan through the schemas are
sections like this:

- name: "class"
jsonldPredicate:
"_id": "@type"
"_type": "@vocab"

type: string

In terms of developing workflows for Translator using CWL, we could stick to a file-centric approach: dumping the
results from one query/task into a JSON, then passing that as input to the next query/task — leaving it up to the
underlying software to handle logic related to parsing and validation. However, I think we could take advantage
of CWL’s JSON-LD elements to operate directly on the data objects, and utilize schemas/namespaces/ontologies to
specify and validate the more “conceptual” inputs and outputs (i.e., not just file formats). I’ve played around with this
idea a bit using CWL’s SchemaDefRequirement to schematize special input record types. . .

requirements:
- class: InlineJavascriptRequirement
- class: SchemaDefRequirement

types:
- $import: biolink-types.yaml

biolink-types.yaml

type: record
name: disease
fields:
- name: thing_id
type: string
- name: thing_name
type: string
- name: thing_category
type: string

Such that I can now parameterize the CWL tool with my "disease" record:

{
"disease": {

"thing_id": "8712",
"thing_name": "neurofibromatosis",
"thing_category": ""

}
}

. . . and use some funny in-line JavaScript to parse and pass that record to the Python module as a JSON string:

inputs:
- id: disease

label: Disease
type: biolink-types.yaml#disease
inputBinding:
position: 1
valueFrom: $(JSON.stringify(inputs.disease))

This would hopefully allow me to take advantage of a CWL executor’s built-in features for validating parameters, such
that I’d get an error or warning if my "disease" didn’t conform to specs. It’d also be nice if we could verify that
identifiers and other values map to allowable vocabularies, based on the BioLink model.

41

Sage Workflows User Guide, Release 0.0.1

This is where I get a bit lost/stuck, and haven’t quite been able to wrap my head around the details or mechanics. . .

42 Chapter 14. CWL & Linked Data

CHAPTER 15

Synapse CWL Tools

43

Sage Workflows User Guide, Release 0.0.1

44 Chapter 15. Synapse CWL Tools

CHAPTER 16

Synapse Workflow Hook

45

Sage Workflows User Guide, Release 0.0.1

46 Chapter 16. Synapse Workflow Hook

CHAPTER 17

Indices and tables

• genindex

• modindex

• search

47

	Rationale
	Why use workflows?

	Workflows 101
	Workflow Standards
	Workflow Engines
	Common Workflow Language (CWL)

	Getting Started with CWL
	CWL Inputs & Outputs
	Using Containers
	JavaScript & CWL
	Part 1: InlineJavascriptRequirement
	Part 2: Expression tools

	Scattering Inputs
	Part 1: Getting started
	Part 2: dotproduct
	Part 3: flat_crossproduct
	Part 4: nested_crossproduct

	Staging Folders
	Part 1: Input files in the working directory
	Part 2: Creating a config file in the working directory
	Part 3: Making an input file or directory writable

	Cloud Providers
	Sharing Workflows
	Workflow Metadata
	CWL & Linked Data
	Synapse CWL Tools
	Synapse Workflow Hook
	Indices and tables

